Last Time.
(1) Given a vector bundle $E \xrightarrow{\pi} M$ we started constructing the dual bundle $E^{*} \xrightarrow{\pi^{*}} M$ as a set $E^{*}=\coprod_{q \in M}\left(E_{q}\right)^{*}$.
(2) Out of trivializations $\varphi_{\alpha}:\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{R}^{k}$ we constructed purported trivializations $\varphi_{\alpha}^{*}:\left.E^{*}\right|_{U_{\alpha}} \rightarrow$ $U_{\alpha} \times\left(\mathbb{R}^{k}\right)^{*}$ bijections, linear on each fiber.
(3) We checked $\left(\varphi_{\alpha}^{*} \circ\left(\varphi_{\beta}^{*}\right)^{-1}\right)(q, l)=\left(q, \varphi_{\alpha \beta}^{*}(q) l\right)$ where $\varphi_{\alpha \beta}^{*}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}\left(\left(\mathbb{R}^{k}\right)^{*}\right)$ are C^{∞}.

To prove that E^{*} is a manifold, that φ_{α}^{*} are diffeomorphisms, and that $\pi^{*}: E^{*} \rightarrow M$ is smooth we need a proposition.

Proposition 27.1. Suppose that we have a set X, a cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of X, a collection of bijections $\left\{\psi_{\alpha} \mid V_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in A}$ where W_{α} are manifolds such that for all $\alpha, \beta \in A$
(i) $\psi_{\alpha}\left(V_{\alpha} \cap V_{\beta}\right)$ is open in W_{α} and
(ii) $\psi_{\alpha} \circ \psi_{\beta}^{-1}: \psi_{\beta}\left(V_{\alpha} \cap V_{\beta}\right) \rightarrow \psi_{\alpha}\left(V_{\alpha} \cap V_{\beta}\right)$ is C^{∞},
then X is a manifold so that all ψ_{α} are diffeomorphisms.
Note that the proposition implies that the total space E^{*} of the bundle dual to $E \rightarrow M$ is a manifold. Moreover, for all U_{α} the following diagram commutes

Hence $\left.\pi^{*}\right|_{E_{U_{\alpha}}^{*}}=\operatorname{pr}_{1} \circ \varphi_{\alpha}^{*}$ is C^{∞}. Therefore $\pi^{*}: E^{*} \rightarrow M$ is C^{∞}. Not hard to check that $\varphi_{\alpha}^{*}:\left.\right|_{E_{U_{\alpha}}^{*}} \rightarrow$ $U_{\alpha} \times\left(\mathbb{R}^{k}\right)^{*}$ are diffeomorphisms. Consequently $E^{*} \xrightarrow{\pi^{*}}$ is indeed a vector bundle.

Sketch of proof.
(1) The sets $\left\{\varphi_{\alpha}^{-1}(\mathcal{O}) \mid \alpha \in A\right.$ and $\mathcal{O} \in W_{\alpha}$ is open $\}$ form a basis for a topology on X which make ψ_{α} into homeomorphisms.
(2) Each point $x \in X$ lies in some $V_{\alpha} . \psi_{\alpha}(x)$ lies in a coordinate chart $\varphi: U \rightarrow \mathbb{R}^{m}$ on W_{α}. Declare $\varphi \circ \psi_{\alpha}: \psi_{\alpha}^{-1}(U) \rightarrow \mathbb{R}^{m}$ to be a coordinate chart. (ii) implies that the charts define an atlas.

Can we perform other operations? What do we need?
Example 27.2. Suppose given a vector bundle $E \xrightarrow{\pi} M$ of rank k we want to construct the $n^{\text {th }}$ exterior power $\Lambda^{n} E \xrightarrow{\tau} M$ of a vector bundle $E \rightarrow M$. We set

$$
\Lambda^{n} E=\coprod_{q \in M} \Lambda^{n}\left(E_{q}\right) \quad \text { (as a set) }
$$

Out of a collection $\left\{\varphi_{\alpha}:\left.E\right|_{\alpha} \rightarrow U_{\alpha} \times V\right\}_{\alpha \in A}$ of local trivializations with $\bigcup U_{\alpha}=M$ (V is a fixed finite dimensional vector space) we get for all α and all $q \in U_{\alpha}$ linear isomorphisms

$$
\left.\varphi_{\alpha}\right|_{E_{q}}: E_{q} \xrightarrow{\sim}\{q\} \times V .
$$

Applying exterior power Λ^{n} to everything above we get

$$
\Lambda^{n}\left(\left.\varphi_{\alpha}\right|_{E_{q}}\right): \Lambda^{n} E_{q} \rightarrow\{q\} \times \Lambda^{n}(V)
$$

whence

$$
\Lambda^{n}\left(\varphi_{\alpha}\right):\left.\Lambda^{n} E_{q}\right|_{U_{\alpha}} \rightarrow\left\{U_{\alpha}\right\} \times \Lambda^{n}(V)
$$

Hence for all indices α and β with $U_{\alpha} \cap U_{\beta} \neq \emptyset$ we have

$$
\begin{gathered}
\left(\Lambda^{n} \varphi_{\alpha} \circ\left(\Lambda^{n} \varphi_{\beta}\right)^{-1}\right)(q, \eta)=\left(q, \Lambda^{n}\left(\varphi_{\alpha \beta}(q)\right) \eta\right) \\
1
\end{gathered}
$$

For any finite dimensional vector space V over \mathbb{R} we have a map

$$
\Lambda^{n}: \mathrm{GL}(V) \rightarrow \mathrm{GL}\left(\Lambda^{n} V\right), \quad A \mapsto \Lambda^{n} A,
$$

which is a group homomorphism and is polynomial in A. That is to say, $\Lambda^{n}\left(\left(a_{i j}\right)\right)$ has entries which are polynomials in $a_{i j}$'s. Hence Λ^{n} is C^{∞}. Therefore the purported transition maps $\Lambda^{n}\left(\varphi_{\alpha \beta}\right): U_{\alpha} \cap U_{\beta} \rightarrow$ GL $\left(\Lambda^{n} V\right)$ are C^{∞}. Now Proposition 27.1 implies that $\Lambda^{n} E$ is a manifold and the local trivializations $\left\{\Lambda^{n} \varphi_{\alpha}\right.$: $\left.\Lambda^{n} E\right|_{U_{\alpha}} \rightarrow\left\{U_{\alpha}\right\} \times \Lambda^{n}(V)$ are smooth. Proceeding as in the case of the dual bundle we get that $\Lambda^{n} E \xrightarrow{\tau} M$ is a vector bundle of rank $\binom{k}{n}$.
Note that at this point we have constructed, for any manifold M, the bundles $\Lambda^{n}\left(T^{*} M\right) \rightarrow M$ and hence differential forms.
Example 27.3. Suppose that $E \xrightarrow{\pi_{E}} M$ and $F \xrightarrow{\pi_{F}} M$ are two vector bundles. Let's try and construct the Whitney sum $E \oplus F \rightarrow M$. We choose a cover U_{α} of M such that $\left.E\right|_{U_{\alpha}}$ and $\left.F\right|_{U_{\alpha}}$ are both trivial for all α. We have trivializations

$$
\begin{aligned}
\varphi_{\alpha}^{E}:\left.E\right|_{U_{\alpha}} & \rightarrow U_{\alpha} \times \mathbb{R}^{k} \\
\varphi_{\alpha}^{F}:\left.F\right|_{U_{\alpha}} & \rightarrow U_{\alpha} \times \mathbb{R}^{l}
\end{aligned}
$$

We set $E \oplus F=\coprod_{q \in M} E_{q} \oplus F_{q}$ (as a set). The purported trivializations are

$$
\varphi_{\alpha}^{E} \oplus \varphi_{\alpha}^{F}:\left.\left.E\right|_{U_{\alpha}} \oplus F\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times\left(\mathbb{R}^{k} \oplus \mathbb{R}^{l}\right)
$$

The corresponding transition maps are

$$
\varphi_{\alpha \beta}^{E \oplus F}(q)=\varphi_{\alpha \beta}^{E}(q) \oplus \varphi_{\alpha \beta}^{F}(q)
$$

and the map $\mathrm{GL}\left(\mathbb{R}^{k}\right) \times \mathrm{GL}\left(\mathbb{R}^{l}\right) \rightarrow \mathrm{GL}\left(\mathbb{R}^{k} \oplus \mathbb{R}^{l}\right)$ with $(A, B) \mapsto\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ is C^{∞}. Proceeding as in the case of exterior powers we get that $E \oplus F \rightarrow M$ is a vector bundle.
Question. What's the general principle?
Answer. C^{∞} functors.
To define functors we must first define categories.
Definition 27.4. A category \mathcal{C} consists of

- A collection of objects \mathcal{C}_{0}.
- For each pair of objects $X, Y \in \mathcal{C}_{0}$ a set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ of arrows/morphisms.
- For each triple of objects $X, Y, Z \in \mathcal{C}_{0}$ a composition

$$
\begin{aligned}
\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z) \\
(Z \stackrel{g}{\leftrightarrows} Y, Y \stackrel{f}{\longleftarrow} X) & \mapsto Z \stackrel{g \circ f}{\leftrightarrows} X
\end{aligned}
$$

- For each object $X \in \mathcal{C}_{0}$ a morphism $1_{X} \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that
(i) For all $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ we have $1_{Y} \circ f=f=f \circ 1_{X}$; and
(ii) \circ is associative: for all $W \stackrel{h}{\longleftarrow} Z \stackrel{g}{\longleftarrow} Y \stackrel{f}{\leftrightarrows} X$ we have $h \circ(g \circ f)=(h \circ g) \circ f$.

We set $\mathcal{C}_{1}=\coprod_{X, Y \in \mathcal{C}_{0}} \operatorname{Hom}_{\mathcal{C}}(X, Y)$. This is a collection of all morphisms.
Example 27.5. $\mathcal{C}=$ Set, the collection of all sets and maps of sets is a category. \mathcal{C}_{0} is the collection of all sets and for all $X, Y \in \mathcal{C}_{0}$ we have $\operatorname{Hom}_{\text {Set }}(X, Y)=\{f: X \rightarrow Y \mid f$ is a function $\}$

Example 27.6. $\mathcal{C}=$ Top, the category of topological spaces and continuous maps.
Example 27.7. $\mathcal{C}=$ Man, the category of manifolds. \mathcal{C}_{0} is usually taken as the collection of all finite dimensional, Hausdorff, paracompact manifolds and the morphisms are C^{∞} maps.
Example 27.8. $\mathcal{C}=$ Lie, the category of Lie groups.
Example 27.9. $\mathcal{C}=\mathrm{Vec}$, the category of finite dimensional vector spaces over \mathbb{R} where the morphisms are linear maps.

Example 27.10. $\mathcal{C}=\mathrm{Vec}^{\text {iso }}$, the category of finite dimensional vector spaces over \mathbb{R} where the morphisms are linear isomorphisms.
Next Time. Functors, smooth functors, and differential forms.

