Last Time.

- (1) Given a vector bundle  $E \xrightarrow{\pi} M$  we started constructing the dual bundle  $E^* \xrightarrow{\pi^*} M$  as a set  $E^* = \coprod_{q \in M} (E_q)^*$ .
- (2) Out of trivializations  $\varphi_{\alpha} : E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{k}$  we constructed purported trivializations  $\varphi_{\alpha}^{*} : E^{*}|_{U_{\alpha}} \to U_{\alpha} \times (\mathbb{R}^{k})^{*}$  bijections, linear on each fiber.
- (3) We checked  $(\varphi_{\alpha}^* \circ (\varphi_{\beta}^*)^{-1})(q,l) = (q, \varphi_{\alpha\beta}^*(q)l)$  where  $\varphi_{\alpha\beta}^* : U_{\alpha} \cap U_{\beta} \to \mathrm{GL}((\mathbb{R}^k)^*)$  are  $C^{\infty}$ .

To prove that  $E^*$  is a manifold, that  $\varphi^*_{\alpha}$  are diffeomorphisms, and that  $\pi^*: E^* \to M$  is smooth we need a proposition.

**Proposition 27.1.** Suppose that we have a set X, a cover  $\{U_{\alpha}\}_{\alpha \in A}$  of X, a collection of bijections  $\{\psi_{\alpha} \mid V_{\alpha} \to W_{\alpha}\}_{\alpha \in A}$  where  $W_{\alpha}$  are manifolds such that for all  $\alpha, \beta \in A$ 

- (i)  $\psi_{\alpha}(V_{\alpha} \cap V_{\beta})$  is open in  $W_{\alpha}$  and
- (ii)  $\psi_{\alpha} \circ \psi_{\beta}^{-1} : \psi_{\beta}(V_{\alpha} \cap V_{\beta}) \to \psi_{\alpha}(V_{\alpha} \cap V_{\beta}) \text{ is } C^{\infty},$

then X is a manifold so that all  $\psi_{\alpha}$  are diffeomorphisms.

Note that the proposition implies that the total space  $E^*$  of the bundle dual to  $E \to M$  is a manifold. Moreover, for all  $U_{\alpha}$  the following diagram commutes



Hence  $\pi^*|_{E^*_{U_{\alpha}}} = \operatorname{pr}_1 \circ \varphi^*_{\alpha}$  is  $C^{\infty}$ . Therefore  $\pi^* : E^* \to M$  is  $C^{\infty}$ . Not hard to check that  $\varphi^*_{\alpha} : |_{E^*_{U_{\alpha}}} \to U_{\alpha} \times (\mathbb{R}^k)^*$  are diffeomorphisms. Consequently  $E^* \xrightarrow{\pi^*}$  is indeed a vector bundle.

Sketch of proof.

- (1) The sets  $\{\varphi_{\alpha}^{-1}(\mathcal{O}) \mid \alpha \in A \text{ and } \mathcal{O} \in W_{\alpha} \text{ is open}\}$  form a basis for a topology on X which make  $\psi_{\alpha}$  into homeomorphisms.
- (2) Each point  $x \in X$  lies in some  $V_{\alpha}$ .  $\psi_{\alpha}(x)$  lies in a coordinate chart  $\varphi : U \to \mathbb{R}^m$  on  $W_{\alpha}$ . Declare  $\varphi \circ \psi_{\alpha} : \psi_{\alpha}^{-1}(U) \to \mathbb{R}^m$  to be a coordinate chart. *(ii)* implies that the charts define an atlas.

Can we perform other operations? What do we need?

**Example 27.2.** Suppose given a vector bundle  $E \xrightarrow{\pi} M$  of rank k we want to construct the  $n^{th}$  exterior power  $\Lambda^n E \xrightarrow{\tau} M$  of a vector bundle  $E \to M$ . We set

$$\Lambda^n E = \prod_{q \in M} \Lambda^n(E_q) \quad \text{(as a set)}.$$

Out of a collection  $\{\varphi_{\alpha} : E|_{\alpha} \to U_{\alpha} \times V\}_{\alpha \in A}$  of local trivializations with  $\bigcup U_{\alpha} = M$  (V is a fixed finite dimensional vector space) we get for all  $\alpha$  and all  $q \in U_{\alpha}$  linear isomorphisms

$$\varphi_{\alpha}\big|_{E_q}: E_q \xrightarrow{\sim} \{q\} \times V.$$

Applying exterior power  $\Lambda^n$  to everything above we get

$$\Lambda^{n}(\varphi_{\alpha}\big|_{E_{q}}):\Lambda^{n}E_{q}\to\{q\}\times\Lambda^{n}(V),$$

whence

$$\Lambda^{n}(\varphi_{\alpha}): \Lambda^{n}E_{q}\big|_{U_{\alpha}} \to \{U_{\alpha}\} \times \Lambda^{n}(V)$$

Hence for all indices  $\alpha$  and  $\beta$  with  $U_{\alpha} \cap U_{\beta} \neq \emptyset$  we have

$$\left(\Lambda^n \varphi_\alpha \circ (\Lambda^n \varphi_\beta)^{-1}\right) (q,\eta) = (q,\Lambda^n (\varphi_{\alpha\beta}(q))\eta) .$$

For any finite dimensional vector space V over  $\mathbb{R}$  we have a map

$$\Lambda^n : \mathrm{GL}(V) \to \mathrm{GL}(\Lambda^n V), \quad A \mapsto \Lambda^n A,$$

which is a group homomorphism and is *polynomial* in A. That is to say,  $\Lambda^n((a_{ij}))$  has entries which are polynomials in  $a_{ij}$ 's. Hence  $\Lambda^n$  is  $C^\infty$ . Therefore the purported transition maps  $\Lambda^n(\varphi_{\alpha\beta}) : U_\alpha \cap U_\beta \to$  $\operatorname{GL}(\Lambda^n V)$  are  $C^\infty$ . Now Proposition 27.1 implies that  $\Lambda^n E$  is a manifold and the local trivializations  $\{\Lambda^n \varphi_\alpha :$  $\Lambda^n E|_{U_\alpha} \to \{U_\alpha\} \times \Lambda^n(V)$  are smooth. Proceeding as in the case of the dual bundle we get that  $\Lambda^n E \xrightarrow{\tau} M$ is a vector bundle of rank  $\binom{k}{n}$ .

Note that at this point we have constructed, for any manifold M, the bundles  $\Lambda^n(T^*M) \to M$  and hence differential forms.

**Example 27.3.** Suppose that  $E \xrightarrow{\pi_E} M$  and  $F \xrightarrow{\pi_F} M$  are two vector bundles. Let's try and construct the *Whitney sum*  $E \oplus F \to M$ . We choose a cover  $U_{\alpha}$  of M such that  $E|_{U_{\alpha}}$  and  $F|_{U_{\alpha}}$  are both trivial for all  $\alpha$ . We have trivializations

$$\begin{split} \varphi^E_\alpha &: E\big|_{U_\alpha} \to U_\alpha \times \mathbb{R}^k \\ \varphi^F_\alpha &: F\big|_{U_\alpha} \to U_\alpha \times \mathbb{R}^l \end{split}$$

We set  $E \oplus F = \coprod_{q \in M} E_q \oplus F_q$  (as a set). The purported trivializations are

$$\varphi^E_{\alpha} \oplus \varphi^F_{\alpha} : E\big|_{U_{\alpha}} \oplus F\big|_{U_{\alpha}} \to U_{\alpha} \times (\mathbb{R}^k \oplus \mathbb{R}^l)$$

The corresponding transition maps are

$$\varphi^{E\oplus F}_{\alpha\beta}(q) = \varphi^{E}_{\alpha\beta}(q) \oplus \varphi^{F}_{\alpha\beta}(q)$$

and the map  $\operatorname{GL}(\mathbb{R}^k) \times \operatorname{GL}(\mathbb{R}^l) \to \operatorname{GL}(\mathbb{R}^k \oplus \mathbb{R}^l)$  with  $(A, B) \mapsto \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$  is  $C^{\infty}$ . Proceeding as in the case of exterior powers we get that  $E \oplus F \to M$  is a vector bundle.

Question. What's the general principle?

Answer.  $C^{\infty}$  functors.

To define *functors* we must first define *categories*.

Definition 27.4. A category C consists of

- A collection of objects  $C_0$ .
- For each pair of objects  $X, Y \in \mathcal{C}_0$  a set  $\operatorname{Hom}_{\mathcal{C}}(X, Y)$  of arrows/morphisms.
- For each triple of objects  $X, Y, Z \in \mathcal{C}_0$  a composition

$$\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$$
$$\left( Z \xleftarrow{g} Y, Y \xleftarrow{f} X \right) \mapsto Z \xleftarrow{g \circ f} X$$

- For each object  $X \in \mathcal{C}_0$  a morphism  $1_X \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$  such that
  - (i) For all  $f \in \text{Hom}_{\mathcal{C}}(X, Y)$  we have  $1_Y \circ f = f = f \circ 1_X$ ; and
  - (ii)  $\circ$  is associative: for all  $W \xleftarrow{h} Z \xleftarrow{g} Y \xleftarrow{f} X$  we have  $h \circ (g \circ f) = (h \circ g) \circ f$ .

We set  $\mathcal{C}_1 = \coprod_{X,Y \in \mathcal{C}_0} \operatorname{Hom}_{\mathcal{C}}(X,Y)$ . This is a collection of all morphisms.

**Example 27.5.** C = Set, the collection of all sets and maps of sets is a category.  $C_0$  is the collection of all sets and for all  $X, Y \in C_0$  we have  $\text{Hom}_{\text{Set}}(X, Y) = \{f : X \to Y \mid f \text{ is a function}\}$ 

**Example 27.6.** C = Top, the category of topological spaces and continuous maps.

**Example 27.7.** C = Man, the category of manifolds.  $C_0$  is usually taken as the collection of all finite dimensional, Hausdorff, paracompact manifolds and the morphisms are  $C^{\infty}$  maps.

**Example 27.8.** C = Lie, the category of Lie groups.

**Example 27.9.** C = Vec, the category of finite dimensional vector spaces over  $\mathbb{R}$  where the morphisms are linear maps.

**Example 27.10.**  $C = \text{Vec}^{\text{iso}}$ , the category of finite dimensional vector spaces over  $\mathbb{R}$  where the morphisms are linear isomorphisms.

Next Time. Functors, smooth functors, and differential forms.

Typeset by R. S. Kueffner II